

RELATIONAL DATABASES
Implementation in a DVD retail chain

Christopher Hotten

An illustrated report showing an understanding and knowledge of relational databases, and
how it would apply to our chain

Contents

Introduction 3

Fields 4

Records 5

Tables 5

Entities and Attributes 7

Entity Relationships 9

Cardinality 10

One-to-One 10

One-to-Many 11

Many-to-Many 11

Optionality 12

Mandatory 12

Optional 13

Mixed 13

Primary Key 15

Foreign Key 16

Candidate Key 17

Composite Key 18

Referential Integrity 19

Normalisation 21

Data Dictionary 23

Making a Relational Database work in our store with an ERD 24

Appendices:

A Database Schema using Normalisation techniques 27

B Entity Relationship Diagram 28

C Data Dictionary 29

Introduction

Our business requires the use of a relational database. Without one, the store will be

unable to operate. Purchasing an off-the-shelf solution at this time would cost too much

money, so the only viable option at this stage is to produce a database myself. In order to

receive approval, I have produced this report to show my understanding and knowledge of

relational databases.

The report explains and analyses the different parts that go into making a database. It explains

how a relational database is structured using fields, records and tables. Different concepts

about entities and attributes, and how these relate to fields, records and tables are covered.

The report also explains what relationships there are between entity types and the purpose

of them.

The relationships that exist between different entities are examined in terms of their

cardinality and optionality. This report explains the purpose of primary keys, foreign keys (and

the use of them in relationships between tables) candidate keys, and composite keys. The

report explains the purpose of referential integrity, and also the purpose and benefits of

normalisation. Throughout, the report will be contain explains of what specific terms mean.

At the back of the report are the three appendices: an entity-relationship diagram (ERD), an

illustration of data relating to our store normalised to third normal form, and a data

dictionary.

Fields

A field is something that will contain only one piece of data about a subject. A database

will contain multiple fields, as these are the attributes that make up the characteristics of a

subject, and will be the column headers in a table in a database. Different fields will have

different names depending on what the database is about. A database that stores information

about children in a classroom may have a field for age, a field for height, and a field for gender

etc., while a database that holds information about cars in showroom may have a field for

model, a second field for licence plate numbers, and a last field for the weight of the car. What

the two examples have in common is that each field is only containing one piece of data. A

field would not have information about the age and the height of a child, this would have to

be split into two separate fields. Figure A below shows some of the fields that could be used

for the database for our store, with pieces of data split into separate fields

Fig A: Data about a customer split into different fields of Customer ID, Surname, Forename, Title,
Gender and Date of Birth

Records

A record (known as a ‘Tuple’) is made up of the fields and the data inside them.

Records hold the data about things. A record can hold data about a person. A record can

hold data about a car. A record can hold data about a company. The central point is that a

record should only relate to one person or subject. A database will hold information about

multiple subjects, so the database will contain multiple records, with each record containing

the fields and the data in them that were input earlier. Figures B and C below show

examples of records that could be held in our database

Fig B: The record for Lucy Boynton, which contains the separate fields and the data which relates to
each field

Fig C: A separate record for Michelle Duncan. The field names have not changed, but the data within
them will relate to Michelle Duncan only in her record.

Tables

Tables (or ‘Datasheets’) contain the records that contain the fields that contain the

data. In the paragraphs and examples above it was shown how the information (or data)

about a customer would be split into different fields (surname, forename, title, gender etc)

with the fields and data then making up the record that relates to the individual customer. To

run the business and find data efficiently, the records need to be stored in one place; in this

Data

case, a table. A table holds all the records together that are related to a subject. The records

for customers would be held in a table. A separate table would hold the records about DVD’s

we stock. A third table would be used for storing information about staff who work at our

store. To store all the information about three different subjects (customers, DVD’s and staff)

in one table would be impractical and a waste of system resources, so the records relating to

a specific subject would be stored in a specific table.

Fig D: The records of all the customers are now in one table labelled ‘Customers’

Fig E: The records of all the DVD’s are now in one table labelled ‘DVD Data’

Fig F: The records of all the employees are now in a table called ‘Staff Personal Details’. Notice that
while ‘Customers’ and ‘Staff Personal Details’ both refer to people, the records have different fields

Entities and Attributes

Simply put, an entity can be an object or thing. In the previous section, it was explained

how records can hold information about a person, about a car, or any object you desire. An

object or thing that we want to collect data about in a database is called an entity. In our

database there will be different entities, or entity types. All the customers of our store would

be an entity type called ‘Customers’. All the staff would be an entity type called ‘Staff’.

Remember, an entity can be an object, so the DVD’s would be their own entity type, the

service points would be their own entity types, and so on. All these different entity types will

have different information (or Attributes) that we need to collect about them.

For the staff at the store, we need to know his/her individual National Insurance number and

tax code so that we can make sure we are paying the correct person the correct amount of

money. We may also need body measurements so that we can order the correct size store

uniform. The NI number, tax code and body measurements, these would all be attributes that

the staff have. For a customer of the store, their body measurements are irrelevant to us. We

may need to collect different data though, like their preferences of film genre, so the

customer would have different attributes to a member of staff. A DVD obviously has no

information like a National Insurance number or gender to collect, but it will still have

attributes (just like any entity), such as the title of the film, the length in minutes, the

distributor etc. Attributes are also referred to as fields (see first section for an explanation of

fields), and when the data is collected, each object will have their own record.

When all the records about the same subject or object are put together, we have the created

table – or entity type. While an entity type will have a name that allows for easy recognition

– e.g. Staff, Customer, DVD etc., the table which holds the records does not necessarily need

to have the same name as the entity type. A table holding information about customers could

have a name like ‘C1’, or ‘CUST’ for instance. Whatever the name, it will be referring to the

entity type called ‘Customer’, and can only refer to that entity type.

Fig G: A table showing the different fields (or attributes) of customers

In Figure G above, data has been collected about customers, with the data being split into

different fields, like surname, forename, title, gender etc. – these are the attributes of the

customer. There are multiple records (e.g. a record for Lucy Boynton, a record for Tom

Hollander, a record for Michelle Duncan etc.) which are together in the table. The records are

also referred to as entity instances. When we see the information about a customer, such as

Lucy Boynton, born 17/02/1994 and living at 16 St George’s Way, we see the record – or entity

instance. This is an instance from the entity type ‘Customer’. Notice at the top of the image

that the name of the table is ‘CUST’. We could have given it any name, but it always refers to

the entity type ‘Customer’.

Entity Relationships

In the previous section it has been established what entities are and the different

entity types that would exist in a database specific to the DVD store. In our store, different

entity types will interact with each other in different ways. A customer could rent a DVD. This

means that the entity type ‘Customer’ would have a relationship with the entity type ‘DVD’ –

or an entity relationship. Staff on a certain pay band could work on different departments in

the store, so there would be relationships between staff and departments. Customers (or the

entity type ‘Customer’) however would not work in any department at the store, so would

have different entity relationships to that of the staff (or entity type ‘Staff’). Relationships are

the links between entities. Relationships are used so that fields are not trying to hold more

than one piece of data and tables do not become unwieldly.

Fig H: Image showing a relationship between entity types ‘Customer’ and ‘DVD’, and entity types
‘Staff’ and ‘Department’

Figure H above shows a simplified relationship between entity types – the customer would

need to be able to rent a DVD, so a line is drawn connecting the entities types, but would not

need to work in a department in the store, so no line exists between the customer and

department.

Cardinality

Different entities will have different degrees of a relationship with other entities,

which is what cardinality refers to. The relationship between entities is visualised in an ‘Entity

Relationship Diagram’ (ERD). An ERD helps the designer of a database to better understand

the data that is needed in a database. In visualising the cardinality, there are three different

degrees to explore.

(Appendix B is an illustration of an ERD for our store, a detailed breakdown is provided later

in the report under ‘Making a Relational Database work in our store with an ERD’ after other

relevant terms have been explained)

One-to-One Cardinality

The first degree of cardinality is ‘One-to-One’ (shortened to ‘1:1’). This is where only one

instance of an entity can only relate to another instance from a different entity. A common

example of this is something like a marriage. A man can only be married to one woman (and

vice versa). So one entity instance of a man can only be married to one entity instance of a

woman. In Figure H of the ‘Entity Relationships’ section, a simple relationship is shown for an

employee working in a department. If the one employee can only work in the one department

this may be quite limiting. Also if one instance of a customer can only ever rent the one

instance of a DVD then the business will obviously not last long, so this type of relationship

would not be beneficial for us.

Fig I: Image showing a ‘One-to-One’ relationship. The ‘1’ next to each rectangle shows the one
instance, or “at most one instance”

One-to-Many Cardinality

The next degree of relationship is ‘One-to-Many’ (shortened to ‘1:M’). The first part of this

degree is the same as the One-to-One degree, however the relationship is now with many

instances. This degree of relationship allows for one instance of an entity to have a

relationship with multiple instances from a different entity. In our store a manager will be

managing many members of staff, so therefore a ‘One-to-Many’ degree of cardinality would

be applied here. If a manager was managing only one member of staff (or one instance of the

‘Employee’ entity type), then this would be a ‘One-to-One’ degree of cardinality.

Fig J: Image showing a ‘One-to-Many’ relationship. The ‘1’ on the left has stayed the same from
figure I, but the ‘1’ on the right side is now replaced by an ‘M’ to represent ‘Many’. Notice the three
lines (or ‘crows foot’) now connected to the Employee box to show multiple instances.

Many-to-Many Cardinality

The final degree is a ‘Many-to-Many’ relationship (shortened to ‘M:N’) This relationships

occurs where many instances of one entity can have a relationship with many instances of a

different entity. In our store will be many copies of different films and we plan to let

customers rent more than one film at any one time, so this is a ‘Many-to-Many’ relationship,

as shown in figure K below

Fig K: Image showing a ‘Many-to-Many’ relationship, where many instances of a ‘Customer’ can rent
many instances of a ‘DVD’. The ‘N’ also stands for ‘Many’. Notice that separate ‘crow’s feet’ are now
attached to both boxes in this relationship

Optionality

In the section above, the different degrees of relationship (or cardinality) have been

explained, but what is explored below is the optionality of the relationships. Optionality refers

to the options that can exist in a relationship – whether a relationship is mandatory, optional

or mixed.

Mandatory

In a mandatory relationship, one entity has to use another. A common example of this would

be that a child has to have a mother, else the child would not exist, and for there to be a

mother there has to be a child. So for every instance of entity A, there must be an instance of

entity B. in a commercial store, a customer would only become a customer after receiving

his/her custom, meaning that a store must have one received at least one order.

Fig L: Examples of mandatory relationships. A mother and child are both mandatory for each other.
Multiple children can have the same mother, but multiple mothers cannot have the same child. A
customer cannot exist without having placed an order, and an order can only be made by a customer
placing one. Also shown are extra lines added to show the mandatory cardinality of the relationship

One Many

Cardinality

Mandatory Mandatory

Optional

As the name suggests, in an optional relationship there may or may not be a matching record

in each entity. In our store, there will be different genres of films. For example, there could

be a genre called ‘Arthouse’. In this section there could be none, one or many films. One film

may or may not be described as being ‘Arthouse’. Whether this would make financial sense

to have an empty section is not relevant. The important part is that an optional relationship

is being described here. It is not mandatory for an ‘Arthouse’ genre to have any films in it, and

it is not mandatory for a film to be in the ‘Arthouse’ genre.

Fig M: An example of an optional relationship. The genre ‘Arthouse’ could have none, one or many
film titles in it. A film may or may not be in the ‘Arthouse’ genre. The vertical line next to the
Arthouse entity represents one and the ‘crow’s foot’ next to the entity type ‘Film’ represents many, to
show a ‘One to Many’ relationship. Note the added circles, which show the ‘zero or many’ optionality
of the relationship.

Mixed

A mixed relationship is where mandatory and optional relationships occur within the same

relationship. In a mixed relationship one entity A requires the use of entity B, but entity B

does not require entity A to exist. Earlier, it was explained that a mother and child, and a

customer and an order, are in mandatory relationships; one cannot exist without the other.

In a mixed relationship though, one entity can exist with or without another entity. Our store

will be a medium-sized rental store, which will likely require just one manager and several

One Many

Cardinality Optional Optional

floor staff who will re be required to report to the manager. If our store was much smaller

though, it could be run by one person. That person would manage the store by his/herself,

and so would be referred to a manager by the company and the entity type would be

‘Manager’, regardless if anyone else worked there or not. If an employee was taken on

though, that person would be required to report to a manager. If multiple additional

employees were taken they would be required to report to the store manager. We have then

the mandatory part (employees reporting to a manager) and an optional part (a manager

does not need to manage any staff to be referred to as a manager and so the entity type can

exist without employees) to create a mixed relationship.

Fig N: An example of a mixed relationship. A manager can manage none, one or many employees,
but one or one or many employees have to report to a manager. Note the two vertical lines next to
the ‘Manager’ entity to show ‘one and only one’, and the circle next to the ‘crow’s foot’ to show the
‘zero or many’ optionality of the mixed relationship.

Primary Key

A primary key is an attribute that is unique about an entity, enabling us to identify a

single record. In other words, every record in a table will have something specific about it

that sets it apart from everything else. A primary key can be letters, numbers, or a mixture of

both. For people this could be their National Insurance number. The NI number one person

has will be different to the NI number of anyone else. The serial number of an object will be

unique to that specific object. The objects may all look the same. They may be the same

colour, same dimensions, be the same weight, but that serial number will make it unique in a

table. It is important to note that the value that makes something unique is never used again.

If a person dies, then that person’s National Insurance number could never be used again. It

may be the only unique identifier that person has, making it the only way to identify someone

if information about that person was to be found. For reasons like this, primary keys are

mandatory; every table in a relational database must have a field which is marked as the

primary key

Knowing that a primary key is mandatory for a relational database, in all of our tables there

will be a field marked as the primary key. We are identifying the attribute that makes each

instance of the entity unique. For all the staff who work at the store this could be their

National Insurance Number, as this would be unique to each employee. In the staff records

we could have how much that person is paid, forename, surname, how tall they are, but none

of these would be guaranteed to be unique. Two members of staff may have the same

forename, or be the same height, so those attributes would not be unique. For objects like

DVD’s or staff passes we could assign individual ID numbers.

Fig O: A table with the primary key being the National Insurance number of a person. Highlighted in
orange are two people with the same attributes for surname, tax code and house number, so the
only unique identifiers for these two people are their NI numbers.

Foreign Key

A foreign key is what enables data in tables to be connected, as it enables a link to be

made between entities, giving us the relationships between them. Previously it was explained

that primary keys are unique attributes about an entity. What about when we want to use

those unique attributes in a different entity (or table) that will also have its own primary key?

A table can only have one primary key, so a primary key that appears in a different table needs

to be identified as a foreign key. This concept is explained in more detail below.

In the table named ‘Staff Details’ (which represents the entity ‘Employee’) it was identified

that the National Insurance number of each person is unique, and everyone must have one,

so this is the attribute that is marked as the primary key. In our store, employees also have to

be given ID badges to wear that also enable use of the service points, and so the ID badges

will be an entity called ‘ID Badge’ for instance, and each one will be have a unique badge

number assigned to it.

Fig P: A table containing unique staff ID badge numbers

There will be various attributes for the entity ‘Employee’, like address, phone number, date

of birth etc. If a member of staff leaves/is dismissed from the company and did not return

his/her pass, we need to know which pass to disable on the system so no unauthorised logins

are made to the service point. The ID badges will only contain data like the unique badge

number, forename and surname of the person, but if two people have the same forename

and surname then we would not know which ID badge to disable.

If we connect the entity ‘ID Badge’ to the entity ‘Employee’ through the use of the unique

badge number, then we have made a link between the tables and so a relationship is formed

between the ‘ID Badge’ and ‘Employee’ entities.

Fig Q: A visual representation of the primary key in the ‘Staff ID Badges’ table being inserted as the
foreign key in a table containing staff details

Fig R: A table containing staff details that also now has the staff ID number foreign key in it, that
was the primary key in the ‘Staff ID Badges’ table

The primary key of the ‘IB Badges’ table is now connected to the ‘Staff Details’ table, so the

badge number identifier is now a foreign key in the ‘Staff Details’ table. This means that if a

member of staff leaves/is dismissed, we are able to look up the record and disable the

appropriate ID badge.

Candidate Key

A candidate key is any field in a table that can be used to uniquely identify a record

without referring to any other data. There may be multiple fields in a table that uniquely

identify a record. Whichever field is chosen to be the unique identifier of a record, that

candidate key then becomes the primary key. In tables there may only be one field that can

make each record unique. In the example for a primary key, figure O showed that the National

Insurance number of a member of staff would be the unique identifier for each person. None

of the other fields would qualify as a candidate key as there is no guarantee that the data in

them would be unique (i.e. forenames, surnames, dates of birth; none of these are unique).

If we had originally expanded our table to include the NHS number or birth certificate number

of a person, then these would be candidate keys as the number is unique and never repeated.

Composite Key

A composite key is created when two or more columns in a table are combined to

identify each record in a table. The columns by themselves would not be able to uniquely

identify a record, but when they are combined this allows identification. This means that a

composite key has the same function as a candidate key (enabling unique identification of

records), but because it relies on two or more columns being combined, it is a special type of

candidate key. To help explain this, the table containing the staff details will be referred to

again. The primary key was established as being the National Insurance Number of a member

of staff as this is a unique, non-repeating number.

If we had included the NHS number or birth certificate number of every member of staff,

these would be candidate keys due to their uniqueness, but what if none of these were

available? As none of the other fields would contain data that is guaranteed to be unique, we

would have to combine fields in order to guarantee unique identifiers. If we combined the

forename, surname, the first line of address and the date of birth of a member of staff

together as one composite key, it is likely that this would make each record unique, but is not

guaranteed at all (i.e. it is unlikely but there could be two people living at the same address

who have the same name, same date of birth and work at our store)

We would have to include more and more fields in order to guarantee uniqueness, which is

why something like a National Insurance number is so important to have in our relational

database.

Referential Integrity

Referential integrity refers to making sure that the data in one table does not

contradict the data in another table. It is a type of data integrity, and to make sure we are

preserving the integrity of our data (i.e. making sure the data between tables do not

contradict each other) we need to create rules that need to be observed. In the previous

section there is an explanation of what a foreign key is and an example of it in use in our store,

with regards to staff details and the ID badges they are assigned. The staff ID numbers are all

four digits long, with no letters involved. This is the rule for the primary key in the ‘ID Badge’

table and also for the foreign key in the ‘Staff Details’ table. If a decision was made to change

the rules for the data in the primary key field of the ‘ID Badge’ table, such as instead of being

four digits long, the staff number was made up of three letters and two numbers, we need to

make sure that we make the change where the foreign key appears in the ‘Staff Details’ table,

else we are not keeping the integrity of the data between the tables.

Fig S: A table containing staff details that also now has the staff ID number foreign key in it, but the
data rules have been changed from the Staff ID number being four digits long only, to being a
combination of three letters followed by two numbers

Fig T: The ‘Staff ID Badges’ table which has not had the data rule changed, so the ID numbers are still
four digits long only

If we did not observe this rule change between the tables, the data would be inconsistent and

the integrity is compromised. In the example that is used in the foreign key section, this would

mean that we would no longer be able to identify which badges are assigned to which

members of staff, with records becoming lost (or ‘orphaned’) when queries are run in the

database, as the queries would only bring up results that matched the criteria that has been

set in a search. This means that if we change the rules for what an ID badge number is in the

‘ID Badges’ table, then we must apply the same rule to the foreign key in the ‘Staff Details’

table to keep the integrity of the data.

Normalisation

Normalisation is the process of organizing a database to reduce redundancy and

improve data integrity. What this means is that we organise a database in a way that reduces

the amount of data in a database while still having all the required attributes (or fields) for

entities (or tables). It also means improving the chances of keeping the data consistent across

different tables. Normalisation is also important as it breaks a structure down into atomic

elements. This means that we take data and break it down into further parts until it cannot

be broken down further. A typical example of this is a person’s name. A name like John Smith

could be appear in a database under a column simply called ‘Name’, but it would be more

useful to split this into columns of ‘Forename’ and ‘Surname’. Since neither can be broken

down any further, the forename and surname would be referred to as atomic elements.

There are multiple benefits to using normalisation. It minimises the amount of duplicate data

(otherwise known as redundancy) in a database. This is important as it helps with referential

integrity, as multiple tables do not need to be updated separately with the same new values

for data (i.e. the amount someone is paid only needs to be updated in one table, instead of

several) and also keeps down the actual file size of database, which is important when our

database is operational as the network will struggle when trying to deal with a large database

that has unnecessary repeats of data. While it may initially appear a negative factor that the

process of normalisation can add more tables by the end of the process, this becomes a

positive, as it becomes easier to search and sort through tables for information, as we do not

need to try and squeeze an uncomfortable amount of columns in a page.

The normalisation process involves putting information into a flat file database (or 0NF), then,

by arranging the data in tables and columns (referred to as a schema) we can break down the

data into 1st, 2nd and 3rd Normal Forms (or 1NF, 2NF and 3NF respectively). It is possible to go

past 3NF to 4NF and 5NF, but that will not be required for our database. Appendix A of this

report is a schema using the data that will be in our database normalised to 3NF.

In the schema for our database we can see that the data starting in the 0NF column is just in

a flat structure. Nothing has been organised into tables, and there may be the chance that in

this structure there would be repeating data. An example of this would be in the

‘PayPerAnnum’ column. If lots of staff are on the same wage, this would have to be input

multiple times and would take up unnecessary amounts of room, and could also possibly lead

to wrong amounts being entered. In the 1st Normal form the data is now organised into tables

and columns.

The rules of 1NF is that each table cell should contain a single value and each record needs to

be unique. Some of the columns would only relate to the customer, some to the staff, and

some to the DVD’s in our store. The way the tables have been organised, in each column there

would only be one piece of data, and each record would be unique. So in the table that is

headed by the ‘StaffID Number’ column and at the bottom is the ‘PayPerAnnum’ column, all

the single pieces of data that would be in the columns in between those two would make

every record unique.

As we move in into the 2NF, a central question that helps organise the data for us is whether

the columns in the table are dependent on the primary key. Looking at a table in the 1NF

column will help explain this. In the table that starts with ‘DVDStoreCatalogueNumber’ there

is ‘DateRented’ and ‘DateReturned’. These two columns are not dependant on the individual

catalogue number that we assign for each DVD, and they would not help to identify a DVD in

the store. Also in that table though is a column called ‘RentalIDNumber’, and when a film is

rented and returned would be dependent on the number that we assign the rental

transaction, as just on their own the dates would mean nothing, so the in 2nd Normal Form

that tables contain columns which are reliant on the primary key (the primary key column is

in bold).

In the 3NF for our data, a new rule is introduced – tables in 3NF can only contain columns that

are non-transitively dependant on the primary key. There are two parts to this term that need

to be explained. The transitively part can be described as reviewing if one column is related

to others through another column. The dependence part relates to if the value if one column

is dependent on the data in another column. The schema in Appendix A helps to explain this

concept.

Primary Key Column A Column B

Customer ID CustForename CustSurname

In this example there is no transitive dependence, as a person’s surname has no effect on

what their forename is

Primary Key Column A Column B

DVDCatalogueNumber Certificate CertificateDescription

In this example there is transitive dependence. The certificate description will depend on

what the certificate is. If a certificate that was previously PG-13 is changed to something like

PG-11, this would change the description of who is allowed to see the film and so we would

have to check information for new values when customers are renting out films. The

certificate description is not dependent on the catalogue number for the DVD but is

dependent on the certificate. To make sure the rule of 3NF is observed, the certificate and

description of the certificate are in their own table, with the primary key being ‘Certificate’.

That primary key then appears in the table headed by ‘DVDStoreCatalogueNumber’ as a

foreign key, so this means that the table does not have any transitive dependencies, but can

also still contain information about what certificate rating the film has, without having to

repeat data about the description of the certificate.

Data Dictionary

A Data Dictionary is used for describing all the elements in a table within a database.

It serves as a collection of descriptions about the fields in a table and the records in them. The

dictionary can then be used by anyone who is working on the back-end of the system as they

will be able to see the rules that have been established for data (e.g. a date of birth has to be

in DD/MM/YYYY format). Appendix C of this report is a data dictionary that shows the fields

that will be in our database. The data dictionary for our relational database contains the

names of all the tables, the Primary Key field, field names, data types, length of field, the

validation rule, a description of what the field is used for, and finally typical data that would

appear in that field.

The rules that have been established are called ‘Validation Rules’, and these rules can be set

for every field that requires it. For instance, in the National insurance Number field, the

format will always have to be two letters followed by six numbers and one number at the end,

as this is how NI numbers are always formatted, so a rule would have to be set that a NI

number can only be entered in this format. If an attempt is made to enter an NI number in a

different format, the field will simply refuse to accept the data. Appendix C is the data

dictionary that is being used for our database. An analysis of a field in one of our tables will

help to explain these terms.

Field Name: CustPostcode

The name that has been given to the field

Data Type: Short Text and Field Length: 8

The postcode for a customer will never need to be a large sequence of numbers and letters,

so we know that the type of data required will just be a relatively short sequence of letters

and numbers, and the length of the field has been specified as eight, as this is all a postcode

will need (i.e. two letters, two numbers, a space, one number then two letters, making in total

eight spaces required)

Validation Rule

In this we can make a rule that no special characters can be input (e.g. an asterisk or

ampersand) and that the last three characters should only be one number followed by two

letters and that the total number of characters will be no more than eight)

Description

Simply a description of what the field is used for (e.g. the postcode of the customer)

Example

NE13 4FG

Making a Relational Database work in our store with an ERD

All the sections above have explained and given examples for various terms, as what

they refer to will be used throughout our database. Three appendices appear at the back of

this report, which are specially related to the relational database our store will use.

Appendix B is the Entity Relationship Diagram (ERD) for our store. In the diagram appears

the entities, the cardinality and the optionality of the relationships. Below I propose the

logic behind the decisions of the relationships between the entities so that anyone else who

works on this database will be able to understand. The central question I have asked myself

for the relationships is this: Does entity ‘A’ have to have an entity ‘B’? If so, a relationship is

mandatory, if not, it is optional, and the same question is asked of entity ‘B’ to entity ‘A’

(Starting from top left to right, then working down)

Certificate Entity and DVD Entity

A certificate does not have to have a DVD. Every instance of a Certificate does not

require a DVD, so an instance of a Certificate can be used for none or many DVD’s

A DVD does have to have a rating certificate. It is illegal to sell films that do not have a rating

certificate. For every instance of a DVD, there must be one (and only one) Certificate

attached

Genre Entity and DVD Entity

A genre does not have to have a DVD. Every instance of a Genre does not require a

DVD, so an instance of a Genre can be used for none or many DVD’s

A DVD does not have to have a genre. There are rare films that defy all genres which we can

still sell. If a DVD does have a genre though, it will only have one genre (this is mainly for

easy placement of cases in our store), so it is an optional to have Genre, but at most it will

have one Genre.

DVD Entity and Rental Entity

A DVD does not have to have a Rental to exist. Before our store even opens, the

database will contain records of hundreds of DVD’s. For every instance of a DVD, there does

not need to be an instance of a Rental, though many rentals can use many DVD’s, so it is an

optional at this end

A Rental requires at least one DVD. We rent out DVD’s, so for every instance of a Rental,

there has to be an instance of at least one DVD attached. With no DVD’s, there can be no

rentals, so this is mandatory

Rental Entity and Customer Entity

For every rental there has to be a customer. For a Rental entity to exist, a Customer

entity must exist (as a rental has to be made by a customer). A rental record will include a

customer ID number, so one or many films can be rented out, and it has to be tied to one

instance of a Customer in a mandatory part of the relationship

A Customer does not need a Rental to exist. In our store, someone becomes a customer

once they have created an account with us (this is how we assign a customer ID number to

that person), to create an account with us they do not need to rent a DVD. That person may

never rent a film or could rent many films at one time. This is an optional part of the

relationship.

Pay Band Entity and Staff Entity

A Pay Band can exist without Staff. There are multiple pay bands used by the

company, but every instance of a Pay Band does not have to be used by Staff, so this is

optional. For example, Pay Band C is £17000 per annum, but just because this exists does

not mean a member of staff has to be on it, but then many staff could be on it, so this is an

optional part of the relationship.

Staff do have to have a Pay Band though. For every instance of Staff, there has to be a Pay

Band. So for every member of staff, they have to be on a pay band, but can only ever be on

one pay band at any one time.

Staff Entity and ID Badge Entity

Staff have to have an ID badge, as without one they will not be allowed to enter the

store or get service point access. I have decided that every instance of Staff has to have an

instance of ID Badge, so for every staff member input on the system, there has to be an ID

badge number assigned, making this mandatory

On the other side this means that for every instance of ID Badge, there has to be an instance

of Staff, as an ID badge cannot be created with no one to assign it to. Only one instance of ID

Badge can be assigned to one instance of Staff, so this is also a mandatory part of the

relationship.

Appendix A

* = Foreign Key

Certificate CustomerIDNumber Certificate Certificate
CertificateDescription CustomerForename CertificateDescription CertificateDescription
CustomerIDNumber CustomerSurname
CustomerForename CustomerTitle CustomerIDNumber CustomerIDNumber
CustomerSurname CustomerGender CustomerForename CustomerForename
CustomerTitle CustomerDateOfBirth CustomerSurname CustomerSurname
CustomerGender CustomerAddressLine1 CustomerTitle CustomerTitle
CustomerDateOfBirth CustomerAddressLine2 CustomerGender CustomerGender
CustomerAddressLine1 CustomerAddressLine3 CustomerDateOfBirth CustomerDateOfBirth
CustomerAddressLine2 CustomerPostcode CustomerAddressLine1 CustomerAddressLine1
CustomerAddressLine3 CustomerAddressLine2 CustomerAddressLine2
CustomerPostcode StaffNINumber CustomerAddressLine3 CustomerAddressLine3
FilmTitle StaffForename CustomerPostcode CustomerPostcode
Genre StaffSurname
GenreDescription TaxCode DVDStoreCatalogueNumber DVDStoreCatalogueNumber
Distributor StaffAddressLine1 Distributor *Certificate
DVDStoreCatalogueNumber StaffAddressLine2 FilmTitle *Genre
StarRating StaffAddressLine3 StarRating Distributor
DVDReleaseDate StaffPostcode DVDReleaseDate FilmTitle
PayBand JobTitle StarRating
PayPerAnnum StaffDateOfBirth Genre DVDReleaseDate
RentalIDNumber BadgeIDNumber Genre description
DateRented BadgeDisplayName Genre
DateReturned PayBand PayBand Genre description
StaffNINumber PayPerAnnum PayPerAnnum
StaffForename PayBand
StaffSurname DVDStoreCatalogueNumber RentalIDNumber PayPerAnnum
TaxCode Genre DateRented
StaffAddressLine1 CertificateDescription DateReturned RentalIDNumber
StaffAddressLine2 Distributor *DVDStoreCalalogueNumber
StaffAddressLine3 FilmTitle StaffNINumber *CustomerIDNumber
StaffPostcode StarRating StaffForename DateRented
JobTitle DVDReleaseDate StaffSurname DateReturned
StaffDateOfBirth RentalIDNumber TaxCode
BadgeIDNumber DateRented StaffAddressLine1 StaffNINumber
BadgeDisplayName DateReturned StaffAddressLine2 *BadgeIDNumber
BadgeDisplayFavouriteFilm Certificate StaffAddressLine3 *PayBand

Certificate Description StaffPostcode StaffForename
BadgeDisplayFavouriteFilm JobTitle StaffSurname

StaffDateOfBirth TaxCode
StaffAddressLine1

BadgeIDNumber StaffAddressLine2
BadgeDisplayName StaffAddressLine3
BadgeDisplayFavouriteFilm StaffPostcode

JobTitle
StaffDateOfBirth

BadgeIDNumber
BadgeDisplayName
BadgeDisplayFavouriteFilm

ONF 1NF 2NF 3NF

Appendix B

Appendix C

Database File DVDStoreDatabase.accdb

Table Name tblCertificate Primary Key Field Certificate

Field Name Data Type Field
Length

Input
Mask/Validation Rule

Description Typical Data

Certificate Short Text 5 N/A Ratings certificate of the film. Determines who can
watch the film. Unique sequence of letter(s) and
possibly numbers (hyphen attaches numbers to
letters if numbers involved) for each rating
certificate of a film

PG-13

CertificateDescription Short Text 200 N/A Text description of factors that make up a
certificate

Parents Strongly
Cautioned - Some
material may be
inappropriate for
children under 13.
Parents are urged to
be cautious. Some
material may be
inappropriate for…

Table Name tblCustomer Primary Key Field Cust ID Number

Field Name Data Type Field
Length

Input
Mask/Validation Rule

Description Typical Data

CustIDNumber Number N/A >000000 Unique six-digit number for each customer 146468

CustSurname Short Text 30 N/A Surname of the customer Smith

CustForename Short Text 30 N/A Forename of the customer John

CustTitle Short Text 10 N/A Title of the customer Mr

CustGender Short Text 1 Combo Box, Value List
“M”,”F”

Gender of the customer. Either M of F M

CustDateOfBirth Date/Time N/A DD/MM/YYYY
<#14/03/2001#

Customer’s date of birth 08/12/1999

CustHouse/Flat No Number N/A N/A Customer’s house or flat number 12

CustStreet/Road
Name

Short Text 30 N/A First line of customer’s address Withybrook Road

CustAddressLine2 Short Text 30 N/A Second line of customer’s address Langley Park

CustTown/City Short Text 30 N/A Town or city customer lives in Whitley Bay

CustCounty Short Text 30 N/A County customer lives in County Durham

CustPostcode Short Text 8 >LL00\ 0LL;0;_ Customer’s address postcode NE20 6TH

Table Name tblDVD Primary Key Field Store Catalogue Number

Field Name Data Type Field
Length

Input Mask/Validation
Rule

Description Typical Data

StoreCatalogue
Number

Number N/A Format 00000000 Unique number for each DVD in the store. Eight
digits long. Leading zero at start if number does
not contain eight digits

04896745

FilmTitle Short Text 50 N/A Name of the film Despicable Me 2

Genre Genre 15 Combo Box, Table/Query
SELECT [tblGenre]

Genre of the film. Select from a list. Horror

RunTime(mins) Number N/A <=999 Number of minutes the film lasts for, cannot be
longer than 999

120

Distributor Short Text 30 N/A The film’s distributor Universal

Certificate Short Text 5 Combo Box, Table/Query
SELECT [tblCertificate]

Ratings certificate of the film. Determines who
can watch the film. Select from a list.

PG-13

StarRating(out of
5)

Short Text 5 Combo Box, Value List
“*”,”**”,”***”,”*****”,”*****”

Metacritic score of the film (five stars being the
best)

SequelToA
PreviousFilm?

Yes/No N/A N/A Whether the film is a sequel to a previous film
in a franchise

Yes

DVDReleaseDate Date/Time N/A DD/MM/YYYY
<#14/03/2018#

Date the DVD was released to the public 08/02/2013

Table Name tblGenre Primary Key Field Genre

Field Name Data Type Field
Length

Input
Mask/Validation Rule

Description Typical Data

Genre Short Text 15 N/A Name of a genre that a film can be in Horror

GenreDescription Short Text 255 N/A Text description of the characteristics of the genre Movies in the horror
genre involve blood,
gore, the
supernatural and
things that go bump
in the night. It
includes ghost
stories, alien
invasions….

Table Name tblPayBands Primary Key Field Pay Band

Field Name Data Type Field
Length

Input
Mask/Validation Rule

Description Typical Data

PayBand Short text 1 Like “[F-Z]” Individual letters act as a symbol for the different
amounts paid to staff per annum. One character
long. Rule set so any new pay bands can only
start from letter F upwards

A

PayPerAnnum Currency N/A N/A The amount in pounds paid per annum according
to the pay band character. No decimal places

£26000

Table Name tblRental Primary Key Field Rent ID Number

Field Name Data Type Field
Length

Input
Mask/Validation Rule

Description Typical Data

RentIDNumber Short Text 7 Like “R*”, >L0000000 Unique ID number for every rental that is put
through the system. Letter R followed by six
numbers

R123456

StoreCatalogue
Number

Number N/A Format 00000000 Unique number for each DVD in the store. Eight
digits long. Leading zero at start if number does
not contain eight digits

04896745

CustIDNumber Number N/A >000000 Unique six-digit number for each customer 146468

DateRented Date/Time N/A DD/MM/YYYY Date the DVD was rented from the store 08/01/2019

DateDue Date/Time N/A DD/MM/YYYY Date the DVD is due back at the store in order to
avoid a fine

22/01/2019

DateReturned Date/Time N/A DD/MM/YYYY Date the DVD was returned to the store 24/01/2019

LateReturn? Yes/No N/A =IIf("DateReturned">"
DateDue",Yes)

If the film was returned at a date that was past the
due date or not

Yes

FineAmount Currency N/A £0.50*days=”DateRetu
rned”>”DateDue”

The fine amount in pounds owed by the customer
due to late return of the DVD

£2.00

Table Name tblStaff Primary Key Field NI Number

Field Name Data Type Field
Length

Input
Mask/Validation Rule

Description Typical Data

NINumber Short Text 9 >LL000000L;0;_ National Insurance number of the employee. Two
letters followed by six numbers then a letter

FE112233G

StaffSurname Short Text 30 N/A Surname of the employee Jones

StaffForename Short Text 30 N/A Forename of the employee John

PayBand Short Text 1 Combo Box,
Table/Query SELECT
[tblPayBands]

Individual letters act as a symbol for the different
amounts paid to staff per annum. One character
long

A

TaxCode Short Text 7 N/A Tax code of the employee. Four or five numbers
followed by a letter

1000L

StaffHouse/Flat
No

Number N/A N/A Employee’s house number 12

StaffStreet/Road
Name

Short Text 30 N/A First line of employee’s address Woodlands Road

StaffAddressLine2 Short Text 30 N/A Second line of employee’s address Hitchen Park

StaffTown/City Short Text 30 N/A Town or city employee lives in Whitley Bay

StaffCounty Short Text 30 N/A County employee lives in County Durham

StaffPostcode Short Text 8 >LL00\ 0LL;0;_ Employee’s address postcode NE21 7TH

JobTitle Short Text 30 Combo Box, Value List Employee’s job title at the store Manager

EnrolledInWork
Pension?

Yes/No N/A N/A Whether the employee has enrolled in the
company pension scheme or not

No

StaffDateOfBirth Date/Time N/A DD/MM/YYYY
<#14/03/2001#

Employee’s date of birth 25/05/1989

StaffGender Short Text 1 Combo Box, Value List
“M”,”F”

Gender of the employee. Either M of F F

StaffTitle Short Text 10 N/A Title of the employee Miss

StaffIDNumber Number N/A >0000 Individual four digit number for each member of
staff

1080

Table Name tblStaffIDBadge Primary Key Field Staff ID Number

Field Name Data Type Field
Length

Input
Mask/Validation Rule

Description Typical Data

StaffIDNumber Number N/A >0000 Individual four digit number for each member of
staff

1080

BadgeDisplay
Name

Short Text 30 N/A Name displayed on a badge. First name only Phil

BadgeDisplayFavo
uriteFilm

Short Text 50 N/A An employee’s favourite film Scream

